Some optimization problems in Coding theory

CONTENTS

1. Introduction
2. Covering radius of BCH codes
3. Quasi-perfect codes
4. Singleton bound, MDS, AMDS, NMDS codes
5. Grey-Rankin bound
6. Conclusions

1. Introduction

$\mathbb{F}_{q} \mathbb{F}_{q}^{n}, q$-prime power
$\mathrm{d}(x, y) \quad$ Hamming distance

$\mathrm{d}=\mathrm{d}(\mathrm{C})$ 解in distance
$\mathrm{t}(\mathrm{C})=\left[\frac{d-1}{2}\right]$
$\rho(C)=$ max mid (x, c) covering radius $x \in \mathbb{F}_{q}^{n} c \in C$
$\rho(C)=t(C) \Rightarrow$ Perfect code
$\rho(C)=1+t(C)$ Quasi-perfect code

If C is a k-dimensional subspace of , 形熅n
$C:[n, k, d]_{q}$ code
For linear codes
$d(C)=\{$ min $w t(c) l c \quad \mathbb{C} c \neq 0\}$
$\rho(C) \triangleq m a x$ weight of a coset leader

The parameters of perfect codes

- $\left(n, q^{n}, 1\right)_{q}$ - the whole space \mathbb{F}_{q}^{n}
- $(2 l-1,2,2 l-1)_{2}$ he binary repetition code
- $\left(\frac{q^{s}-1}{q_{3}-1}, q^{\frac{q^{s}-1}{q-1}-s-1}, 3\right)_{q}$ the Hamming codes
- $\left(2_{3}, 2^{12}, 7\right)_{2}$ - the binary Golay code
- $\left(11,3^{6}, 5\right)_{3}$ - the ternary Golay code

Classification (up to equivalence)

- Unique linear Hamming code
- Golay codes are unique
- Open: non-linear Hamming codes
- Hamming bound

$$
|C| \sum_{i=0}^{t}\binom{n}{i}(q-1)^{i} \leq q^{n}
$$

All sets of parameters for which \exists perfect codes are known:

- Van Lint
- Tietäväinen (1973)
- Zinoviev, Leontiev (1972-1973)

Natural question: ? QP codes

2. Covering radius of BCH codes

- Gorenstein, Peterson, Zierler (1960)

Primitive binary 2-error correcting BCH codes \Rightarrow QP

- MacWilliams, Sloane (1977):

Research problem (9.4). Show that no other BCH codes are quasi-perfect

- Helleseth (1979):

No primitive binary t-error-correcting BCH codes are QP when t) 2
Recall: $\mathrm{n}=2^{\mathrm{m}}-1$

- Leontiev (1968):

Partial result for
$2<\frac{1}{2}(d-1)<\frac{\sqrt{n}}{\log n}, m \geq 7$

Binary 3-error correcting BCH codes of length $2^{m}-1, m \geq 4$

$\rho=5$
History:
Van der Horst, Berger (1976)

- $m \equiv 0(\bmod 4)$
- $5 \leq m \leq 12$

Assmus, Mattson (1976)

- $m \equiv 1$ or $3(\bmod 4), m \geq 5$

Completed by T. Helleseth (1978):
m - even, $m \geq 10$

Long BCH codes

$m_{i}(x) \in \mathbb{F}_{2}[x]$
$m_{i}(x) \stackrel{\Delta}{\neq n i n}$ polynomial of α^{i}, where α is of order $2^{m}-1$

Helleseth (1985)

$C=(g(x))$
i) $g(x)=m_{i_{1}}(x) m_{i_{2}}(x) \ldots m_{i_{t}}(x)$
ii) $g(x)$ has no multiple zeros,
iii) $\mathrm{D}=\max \left\{i_{1}, i_{2}, \ldots i_{t}\right\}$

If $2^{m} \geq(D-1)^{4 \text { t退 } E, \mathrm{n}} \quad \rho(C) \leq 2 t+1$

Tietäväinen (1985)
$\rho(\mathrm{C}) \leq 2 t$ for large enough m.
For t-designed BCH codes of length
$n=\frac{1}{N}\left(2^{m}-1\right)$
$g(x)=m_{N}(x) m_{3 N}(x) \ldots m_{(2 t-1) N}(x)$
$2 t-1 \leq \rho \leq 2 t+1$

3. Quasi-perfect codes

Etzion, Mounits (2005, IT-51) : q = 2
$q=3$
$\mathrm{n}=\frac{1}{2}\left(3^{s}+1 \mathrm{k}\right)=\mathrm{n}-2 \mathrm{~s}, \mathrm{~d}=5, \mathrm{\rho}=3$
Gashkov, Sidel'nikov (1986)

$$
\mathrm{n}=\frac{1}{2}\left(3^{s}-, k\right)=\mathrm{n}-2 \mathrm{~s}, \mathrm{~d}=5, \rho=3
$$

if $s \geq 3$ - odd
Danev, Dodunekov (2007)
$q=4$
Two families:
$n=\frac{1}{3}\left(4^{s}-18=n-2 s, d=5\right.$
Gevorkjan et al. (1975)
$\mathrm{N}=\frac{1}{3}\left(2^{2 s+1}+, 1 k\right)=\mathrm{n}-2 \mathrm{~s}, \mathrm{~d}=5$
Dumer, Zinoviev (1978)

Both are quasi-perfect, i.e. $\rho=3$
D. (1985-86)

Open: ? QP codes for q > 4
In particular, QP codes with $d=5$?
$q=3, \quad n=\frac{1}{2}\left(3^{s}-1\right)$
α - primitive n-th root of unity in an extension
field of
$\langle\beta\rangle=\mathbb{F}_{3}^{*} \Rightarrow \alpha=\beta^{2}$
The minimal polynomials of α and α^{-1} :

$$
\begin{aligned}
& g_{1}(x)=(x-\alpha)\left(x-\alpha^{3}\right) \ldots\left(x-\alpha^{3^{s-1}}\right) \\
& g_{-1}(x)=\left(x-\alpha^{-1}\right)\left(x-\alpha^{-3}\right) \ldots\left(x-\alpha^{-3^{s-1}}\right)
\end{aligned}
$$

$C_{s} \triangleq(g(x)), g(x)=g_{1}(x) g_{-1}(x)$
$n=\frac{1}{2}\left(3^{s}-, 12\right)=n-2 s, s \geq 3-$ odd
$\Rightarrow d=5$
$\rho\left(C_{s}\right)=3$
C_{s} is a BCH code!
Set $\gamma=\alpha^{2}$. Then

$$
\begin{aligned}
& \left\{\gamma^{\frac{n-3}{2}}, \gamma^{\frac{n-1}{2}}, \gamma^{\frac{n+1}{2}}, \gamma^{\frac{n+3}{2}}\right\} \\
& \quad=\left\{\alpha^{-3}, \alpha^{-1}, \alpha, \alpha^{3},\right\}
\end{aligned}
$$

Hence, infinitely many counterexamples
to (9.4)!
$C_{3}:[13,7,5]$ QR code
Baicheva, D., Kötter (2002)
Open: i) QP BCH codes for

$$
\cdot q>4 ?
$$

ii) QP BCH codes for $d \geq 7$?

Binary and ternary QP codes with small dimensions

Wagner $(1966,1967)$
Computer search, 27 binary QP codes

- $19 \leq n \leq 55, \rho=3$
- One example for each parameter set.

Simonis (2000): the [23, 14, 5] Wagner code is unique up to equivalence.

Recently:
Baicheva, Bouykliev, D., Fack (2007):
A systematic investigation of the possible parameters of QP binary and ternary codes

Results

- Classification up to equivalence of all binary and ternary QP codes of dimensions up to 9 and 6 respectively;
- Partial classification for dimensions up to 14 and 13 respectively

Important observations

- For many sets of parameters \exists more than one QP code:
$[19,10,5]_{2} \Rightarrow 12$ codes
$[20,11,5]_{2} \Rightarrow 564$ codes
- Except the extended Golay $[24,12,8]_{2}$ code and the $[8,1,8]_{2}$ repetition code we found 11 $[24,12,7]_{2}$ and $2[25,12,8]_{2}$
QP codes with $\rho=4$
Positive answer to the first open problem of Etzion, Mounits (2005).

4. Singleton bound, MDS, AMDS, NMDS

Singleton (1964):
C: $[n, k, d]_{q}$ code $\Rightarrow d \leq n-k+1$
For nonlinear codes: $d \leq n-\log _{q} M+1$ $s=n-k+1$ fingleton defect.
$s=0 \Rightarrow$ MDS codes

An old optimization problem: $m(k, \mathrm{q}) \triangleq \max n: \exists[n, k, n-k$ (MDS code) $\left.^{+1}\right]_{q}$
Conjecture:

$$
m(k, q)=\left\{\begin{array}{cc}
q+1 & 2 \leq k \leq q \\
k+1 & q<k
\end{array}\right.
$$

except for $m(3, q)=m(q-1, q)=q+2$ for $q=$ power of 2 .
$s=1 \Rightarrow$ Almost MDS codes (AMDS)
Parameters: $[n, k, n-k]_{q}$
If C is an AMDS, $C \perp$ is not necessarily AMDS.
D., Landjev (1993): Near MDS codes.

Simplest definition: $d+d^{\perp}=n$

Some properties:

1. If $n>k+q$ every $[n, k, n-k] q$ code is NMDS code.
2. For an AMDS code C : $n, k, n-k] q$ with $k \geq 2$
i) $n \leq 2 q+k$;
ii) C is generated by its codewords of weight $n-k$ and $n-k+1$; if $n>q+k, C$ is generated by its minimum weight vectors.
3. $C:[n, k]_{q}-$ NMDS code with weight distribution $\{A i, i=0, \ldots, n\}$ then:
$A_{n-k+s}=$
$\binom{n}{k-s} \sum_{s=0}^{s-1}(-1)^{j}\binom{n-k+s}{j}\left(q^{s-j}-1\right)+(-1)^{s}\binom{k}{s} A_{n-k}$
4. $A_{n-k} \leq\binom{ n}{k-1} \frac{q-1}{k}$

An optimization problem

Define
$m^{\prime}(k, q)=\max n: \exists$ a NMDS code with parameters $[n, k, n-k]_{q}$

What is known?

1. $m^{\prime}(k, q) \leq 2 q+k$.

In the case of equality $A_{n-k+1}=0$.
2. $m^{\prime}(k, q)=k+1$ for every k > $2 q$.
3. \forall integer $\alpha, 0 \leq \alpha \leq k$

$$
m^{\prime}(k, q) \leq m^{\prime}(k-\alpha, q)+\alpha
$$

4. If $q>3$, then

$$
m^{\prime}(k, q) \leq 2 q+k-2
$$

5. Tsfasman, Vladut (1991): NMDS AG

 codes for every$$
n \leq\left\{\begin{array}{cc}
q+[2 \sqrt{q}] & \text { if } p \text { divides }[2 \sqrt{q}], q=p^{m}, m \geq 3-\text { odd } \\
q+[2 \sqrt{q}]+1 & \text { otherwise }
\end{array}\right.
$$

Conjecture: $m^{\prime}(k, q) \approx q+2 \sqrt{ } q$

5. Grey - Rankin bound

Grey (1956), Rankin(1962)

$C:(n, M, d)_{2}$ code, $(1,1, \ldots 1) \quad C . \in$
$C \triangleq$ self-complementary
Then $M \leq \frac{8 d(n-d)}{n-(n-2 d)^{2}}$
provided $\frac{1}{2}(n-\sqrt{n})<d<\frac{1}{2}(n+\sqrt{n})$

Constructions of codes meeting the Grey-Rankin bound

Gary Mc Guire (1997)

Suppose $n-\sqrt{n}<2 d$. Then
A. i) n-odd; \exists a self-complementary code meeting the Grey-Rankin bound $\Leftrightarrow \exists$ a Hadamard matrix of size $n+1$;
ii) n-even; \exists a self-complementary code meeting the Grey-Rankin bound $\Leftrightarrow \exists$ a quasisymmetric 2 - (n, d, λ) design with
block intersection sizes

$\frac{1}{2}(3 d-n)$
$\lambda=\frac{d(d-1)}{n-(n-2 n)^{2}}$

Remark
A code is said to form an orthogonal array of strength t
,
The projection of the code on to any t coordinates contains every t-tuple the same number of times
$\begin{gathered}\text { Equality in } \\ \Uparrow\end{gathered} \quad M \leq \frac{8 d(n-d)}{n-(n-2 d)^{2}}$ tolds
The distance between codewords in C are all in $\{0, d, n-d, n\}$ and the codewords form an orthogonal array of strength 2.

B. In the linear case

i) n-odd; the parameters of C are
$\left[2^{s}-1, s+1,2^{s-1}-1\right], s \geq 2$
and the corresponding Hadamard matrix is of Sylvester type.
ii) n-even; the parameters are

$$
\begin{aligned}
& {\left[2^{2 m-1}-2^{m-1}, 2 m+1,2^{2 m-2}-2^{m-1}\right] \quad C_{1} \frac{\Delta}{\bar{T}} \mathrm{or}} \\
& {\left[2^{2 m-1}+2^{m-1}, 2 m+1,2^{2 m-2}\right] C_{\overline{\Sigma^{*}}}^{\Delta}}
\end{aligned}
$$

Remark
Put C_{1} and C_{2} side by side:
$R M(1,2 m)=\left(C_{1} \mid C_{2}\right)$
\Downarrow
\# of nonequivalent codes of both types is equal.
Remark
\exists nonlinear codes meeting

$$
M \leq \frac{8 d(n-d)}{n-(n-2 d)^{2}}
$$

Bracken, Mc Guire, Ward (2006)

$u \in N$, even
i) Suppose \exists a $2 u \times 2 u$ Hadamard matrix and $u-$ 2 mutually orthogonal $2 u \times 2 u$ Latin squares.
Then there exists a quasi-symmetric
2-($\left.2 u^{2}-u, u^{2}-u, u^{2}-u-1\right)$ design with block intersection sizes

$$
\frac{1}{2}(u-1) u \quad \frac{1}{2}(u-2) u
$$

ii) Suppose \exists a $2 u \times 2 u$ Hadamard matrix and $u-$ 1 mutually orthogonal Latin squares.
Then \exists a quasi-symmetric
2-($\left.2 u^{2}+u, u^{2}, u^{2}-u\right)$ design with block intersection sizes

$$
\frac{1}{2}(u-1) u \quad \frac{1}{2} u^{2}
$$

The associated codes have parameters
($\mathrm{n}=2 u^{2}-u, \mathrm{M}=8 u^{2}, \mathrm{~d}=u^{2}-u$)
($\mathrm{n}=2 u^{2}+u, \mathrm{M}=8 u^{2}, \mathrm{~d}=u^{2}$)
$u=6$
($n=66, M=288, d=30$)
$\Downarrow \quad \leftarrow$ Open? 30 years
Meeting $M \leq \frac{8 d(n-d)}{n-(n-2 d)^{2}}$

Nonbinary version of GR-bound

Fu, Kløve, Shen (1999)
$C:(n, M, d)_{q}$ - code, for which

$$
\text { 1) } \begin{aligned}
d_{u p} & =\frac{1}{2 q} \sqrt{(q-2)^{2}+4(q-1) n}<d \\
d \leq d_{u p} & =n \frac{q-1}{q}-\frac{q-2}{2 q}
\end{aligned}
$$

2) $\forall a, b \in C \Rightarrow d(a, b) \leq 2$ dup - d.

Then

$$
M \leq \frac{q^{2} d\left(2 d_{u p}-d\right)}{q^{2} d\left(2 d_{u p}-d\right)-(q-1)^{2} n(n-1)}
$$

Construction of codes meeting FKS bound

The general concatenation construction
A: $\left(n_{a}, M_{a}, d_{a}\right)_{\text {Cqde }} \Rightarrow$ outer code
B: $\left(n_{b}, M_{b}, d_{b}\right)_{G B}$ de \Rightarrow inner code

Assume: $q_{a=} M_{b}$
$B=\left\{b_{(i)}, i=0,1 \ldots, M_{b}-1\right\}$

The alphabet of A :
$E_{a}=\left\{0,1, \ldots, q_{a}-1\right\}$
The construction:
$\forall a \in \underset{\Downarrow}{A}, \quad a=\left(a_{1}, a_{2}, \ldots, a_{n_{a}}\right) \bar{a}_{i} \in$
$C(a) \underset{\Downarrow}{=}\left(b\left(a_{1}\right), b\left(a_{2}\right), \ldots, b\left(a_{n_{a}}\right)\right)$
$C=\{c(a): a \quad \nexists\}$
$C:(n, M, d)_{q}$ code with parameters
$n=n_{a} n_{b}, M=M_{a}, d \geq d_{a} d_{b}, q=q_{b}$

D., Helleseth, Zinoviev (2004)

Take
$B:\left(n_{b}=\frac{q^{m}-1}{q-1}, M_{b}=q^{m}, d_{b}=q^{m-1}\right)_{q}$
$q=p^{h}, p-$ prime
A : an MDS code with $d_{a}=n_{a}-1, M_{a}=q^{2 m}$

Take $\quad n_{a}=\frac{1}{2}\left(q^{m}-q\right)+1$
The general concatenated construction:
$C:(n, M, d)_{q}$ with

$$
\begin{aligned}
& n=\frac{q^{m}-1}{q-1}\left(\frac{\mathrm{q}^{\mathrm{m}}-\mathrm{q}}{2}+1\right) \\
& M=q^{2 m}, \mathrm{~d}=\frac{1}{2} \mathrm{q}^{\mathrm{m}-1}\left(\mathrm{q}^{\mathrm{m}}-\mathrm{q}\right)
\end{aligned}
$$

Something more:

1) in terms of n :
$n^{2}-\left(3 q^{m}-q+1\right) n+q^{m}\left(q^{m}-q+2\right)<0$
n_{1}, n_{2} - the roots, $n_{1}<n_{2}$
$0<n_{1}<n_{\max }=\frac{1}{2}\left(q^{m}-q\right)+1<n_{2}$
The con\$truction gives codes satisfying FKS
bound for $\forall n, n_{1}$ < $n \leq n_{\max }$
and with equality for $n=n_{\max }$
n-simplex in the n-dimensional q-ary
Hamming space
\triangleq
A set of q vectors with Hamming distance n between any two distinct vectors.
$M \leq \frac{8 d(n-d)}{n-(n-2 d)^{2}} \approx$ an upper bound on the
size of a family of binary n-simplices with pairwize distance $\geq d$.
$S_{q}(n, d)$ ax \# of n-simplices in the q-ary Hamming n-space with distance $\geq d$.

$$
\begin{gathered}
\Downarrow \\
S_{2}(n, d) \leq \frac{4 d(n-d)}{n-(n-2 d)^{2}}
\end{gathered}
$$

Bassalygo, D., Helleseth, Zinoviev (2006)

$$
S_{\mathrm{q}}(n, d) \leq \frac{q[q d-(q-2) n](n-d)}{n-[(q-1) n-q d]^{2}}
$$

provided that the denominator is positive.
The codes meeting the bound have strength 2.

6. Conclusions

- Optimality with respect to the length, distance, dimension is not a necessary condition for the existence of a QP code;
- The classification of all parameters for which \exists QP codes would be much more difficult than the similar one for perfect codes.

Open (and more optimistic):

- Are there QP codes with $\rho \geq 5$?
- Is there an upper bound on the minimum distance of QP codes?

THANK YOU!

